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Introduction 
When problems occur on spacecraft, onboard and ground-based teams begin to analyze 
the data. Timely access to relevant domain knowledge can mean the difference between a 
nominal, degraded or failed mission. For a spacecraft as large as the ISS, the 
documentation is well over 1 million pages not including reference materials in the form 
of spreadsheets, diagrams, databases, source code, test results and other domain-specific 
forms of knowledge. This is due in large part to the fact that ISS is being developed in 
stages, over many years, with many international collaborators. We believe that tools 
which can provide relevant and timely access to these documents and reference materials 
will decrease  anomaly resolution time with concurrent increases in safety.  

Word Definition Description 
1 Last Record Index Index Number - 16UI 

   0 = Nothing in the buffer 
   1-65535 = Record Index Number 

2 Event Code that 
identifies the event 

Event Code - 16 UI 
   0 = Not used as Event Code 
   1-65535 = Event Code Number 

3 Time at start of 
frame that event 
was logged (LSW) 

The T-field consists of 4 octets of coarse time.   These octets 
are a set of binary counters, cascaded with the adjacent 
counters.  The value represents the elapsed time since  

4 Time at start of 
frame that event 
was logged (MSW) 

midnight 5-6 January 1980. The least significant bit (LSB) of 
the least significant octet of coarse time is equal to 1 second. 

5 State Bits 8-15 (Bit 
15 = MSB) 

Spare (set to zero) 

 State Bits 6,7 Annunciation State 2E 
    0 = Enabled 
    1 = Suppressed 
    2 = Inhibited 
    3 = Undefined 

 State Bit 5 Alarm State 1E 
    0 = Return To Normal 
    1 = In Alarm 

 State Bit 4 Acknowledge State 1E 
    0 = Acknowledged 
    1 = Not Acknowledged 

 State Bits 3-0 (Bit 
0 = LSB) 

Alarm Type State 4E 
    0 = Spare/Don’t Care 
    1 = Robotics Advisory 
    2 = Advisory 
    3 = Caution 
    4 = Warning 
    5 = Emergency Rapid Pressure Loss 
    6 = Emergency Toxic Atmosphere 
    7 = Emergency Fire/Smoke 
    8-15 = Spare 

 

 Netmark: 

 

Diagnostic Data Server:    
Serve realtime telemetry, e.g 
Caution and Warning  events 

Serve ISS document, 
e.g  requirements doc. 

Figure 1: Realtime Knowledge 
diagnostic state which is mapped 
to ISS Requirements documentatio
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Management Example Realtime telemetry determines 
to documents, e.g. map Caution and Warning event [10] 
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aft systems. This means that diagnostic dependency and 
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of models which were developed from information found in the pages and sections in the 
relevant ISS documentation and reference materials. By annotating each model fragment 
with the appropriate domain knowledge sources, from which it was derived, we can 
develop a system which automatically selects those documents representing the domain 
knowledge encapsulated by the models which compute the current spacecraft state. In 
this manner, when the spacecraft state changes, the relevant documentation context and 
presentation will change as well. 

Architecture 
The Realtime Knowledge Management (RKM) tool is developed as an integration of 
three existing software tools: 1) the Diagnostic Data Server [1], a telemetry server which 
provides a temporally organized set of telemetry, logs and data-dumps of the ISS over a 
selected time window 2) the Netmark [2] document database which indexes documents 
both on context (document token) and content (ISS token); and 3) the ISStrider [3] 
model-based diagnostic tool [3] developed using L2 [6]which models both the hardware 
and software aspects of the ISS Command and Data Handling (C&DH) system. These 
three technologies are part of a set of engineering support tools which will be deployed at 
NASA JSC in the next two years.   
 
The flow of information for the RKM architecture follows the numbers in Figure 1: 1) 
Telemetry queries are defined by the diagnostic tool ISStrider (or by the human operator), 
2) telemetry is consumed by ISStrider which produces 3) diagnoses (in the future 
recoveries as well)  and 4) document queries. The document queries to Netmark produce 
5) relevant documents. The telemetry, diagnoses and relevant documents are all 
integrated in user-defined GUIs for rapid access by ISS flight engineers.  
 

Diagnostic 
Data Server:  
telemetry, 
dump database 

telemetry, dumps  2

ISStrider: 
model-based 
diagnosis GUIs 1 diagnoses  telemetry queries 

3
document queries 4Netmark: 

document, 
database  relevant documents 5

Figure 2: Realtime Knowledge Management (RKM) architecture which 
integrates DDS [1],  Netmark [2] and ISStrider[3].

 

Example 
We demonstrate an example of the RKM architecture in Figure 1.,  on an example  from 
the ISS C&DH domain. The DDS serves a realtime Caution and Warning event to 
ISStrider which maps this event  to a portion of the ISS software requirements 



specification (SRS) [4]. This example defines a direct mapping between telemetry and 
corresponding documentation (see Implementation Section for details). 
 
In general the mapping from a caution and warning  event to domain documentation is 
non-trivial and could require methods which reason about hidden state.  For example, the 
documents relevant to interpret a bus caution and warning event (e.g CW #5392), include 
a hardware schematic, Bus Address Assignments Table, and the bus profile. Or for 
example the documents relevant to interpret a computer (MDM) failure caution and 
warning event (e.g. CW #5104) will require all document related to both the failed 
execution of the hardware as well as the software. This would include documents for both 
the hardware and software schematics, requirements specifications, documents which 
define the Built-in Tests (BIT) and Power-On Self-Tests (POST) tests, documents which 
define the rate monotonic scheduler and its tasks, and of course the source code itself 
[8,9,10,11,12,13,14,15,16,17]. 
 
We are developing additional model-based methods based on internal state variables to 
allow for indexing documents based upon the internal structure and topology of the 
subsystem domain.  Below we define the grammar required to implement the RKM 
system. It will also apply to state-less dependency models such as TEAMS as well. For 
TEAMS additional elements will be added to define tests and the source knowledge 
required to model each test. 

Implementation 
The implementation is partitioned into three areas, 1) the grammar to describe the ISS 
document dependencies and the interface into the Netmark  document store/database 2)  
the grammar to describe the ISStrider model-based diagnosis models and its links to the 
document dependencies. Once the document dependencies are defined, we can annotate 
our models with the source documents.  Our models are based upon the ISStrider system, 
which utilizes the L2[6] model-based diagnosis system.  Our approach is also applicable 
for many other diagnostic systems including the state-less structural dependency 
TEAMS[7] tool. For TEAMS focus would be on defining the tests, while for L2 focus is 
on defining the states of the models and its transitions. This is accomplished in L2 
through the use of a model development interface which allows the user to annotate each 
model fragment with documentation. 
 
Document dependency grammar. To develop a system which can capture ISS specific 
document types, we define a document dependency grammar. The grammar serves to 
map the ISS document types to the Netmark tags for both  context and content. Context 
is defined as the sections of documents which are important to index to. We have 
identified a  preliminary set of ISS document contexts: 1) document name 2) section 3)  
page-slide 4) figure 5) table 6) web- link 7) workbook 8) database 9) ) source DDS 
dataset. Content is defined with respect to  domain specific features of the ISS domains. 
We have identified a  preliminary set of ISS document contents: 1) requirement number 2) 
PUI  3) CSCI (software program identifier) 4) part number  5) procedure number.  
 
<doc_dependency>::=  <context>+<content> 



<context>::=<document_name>|<section> | <page-slide> | <figure> |<table>|                       
          <web- link>|<workbook> |<database-table> | <DDS dataset>|… 
<content>::= <requirement number>+ |<PUI> +|<CSCI>+ |<Part Number>+ |  
          <procedure  number>+|<CSCI>+ 
 
Model-based diagnosis grammar. An ISStrider Livingstone model is made up of a set 
components which are connected via a set of connections. At each level, including the 
model level, we can annotate with documentation dependencies which source documents 
to model constructs. 
 
 <model>::=<component>+ (<connection>)* <doc_dependency>* 
 
Each component is defined at its boundaries by a finite set of ports, each of domain 
specific types. Internal to each component, there is a finite-state machine which itself is 
made up of a finite set of states. Directed and undirected transitions between the states are 
defined. Executing the transitions in the forward direction is used to perform state 
estimation, while executing the state transitions in the reverse direction is used to perform 
regulation (recovery). 
 
<component>::=<port>+ <finite_ state_machine> <doc_dependency>* 
<finite_state_machine>::=<state>+ <transition>* <doc_dependency>* 
<transition>::=<guard> <cost> <state> <state> <transition_type><doc_dependency>* 
<state>::=<logical expression> <doc_dependency>* 
 
Each connection between components are defined with a type, port-name and connection 
specific documentation  dependencies. Each port is defined by a type which identifies the 
port as an observation, command or internal port as well the possible values which the 
port can take. Each value is an element of  the set of all possible values: {..vi,vj..}. 
 
<connection> ::=<type> <port>  <doc_dependency>*. 
<port>::=<port-type> <value-type> <doc_dependency> 
<port-type>::=[observation | command | internal] <doc_dependency>* 
<value-type>::=[(discrete|continuous) <value>+ ] <doc_dependency>* 
<value> ::= {..vi,vj..} <dependency>* 
 

Discussion 
At any point in time, there exists a ranked set of diagnoses from the ISStrider system. 
Each of these diagnoses provide a state vector over the state of each component in the 
system. By identifying the active model fragments, the RKM system, given the current 
diagnosis state, can automatically present the user  the documentation entailed by the 
diagnosis. 
 
Since the  documentation is being driven by the telemetry, often it will occur that many 
sets of documents are available. For example, our system will be able to automaticallyt 
find the  intersection of two requirements (raised by some event): requirement(x.x.x.x) 



and requirement(y.y.y.y). First by a context search on requirement(x.x.x.x) in Netmark. 
Netmark we return a set of pages over a range [lb1..ub1]. Then a content search on 
requirement(y.y.y.y) over the range of pages [lb1..ub1]. This will return a more refined set 
of pages [lb2 .. ub2] such that lb1 <= lb2 & lb2<= ub1. 
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